Show simple item record

dc.contributor.authorAtkins, Carey
dc.contributor.authorLucente Stabile, Francesco
dc.contributor.authorRosenthal, Arthur
dc.creatorAtkins, Carey
dc.creatorLucente Stabile, Francesco
dc.creatorRosenthal, Arthur
dc.date2021-11-24T14:05:43.000
dc.date.accessioned2021-11-29T11:58:45Z
dc.date.available2021-11-29T11:58:45Z
dc.date.issued2020-05-04
dc.date.submitted2020-05-03T07:18:03-07:00
dc.identifierresearchday/2020/gradfacultypres/31
dc.identifier.urihttp://hdl.handle.net/20.500.13013/1386
dc.description.abstractWe discuss practical issues involved in implementing the Lucente Stabile Atkins (LSA) cryptosystem, a new asymmetric encryption algorithm that involves both group and number theory. The LSA algorithm requires a key exchange at the beginning of the process to define the group that will be used for the information sharing. We show that the LSA cryptosystem can be implemented with an algorithm that generates an arbitrarily large number of keys of various lengths using a computationally efficient method. By using this list of keys to determine the cyclic group to be used, we have developed a cryptosystem that can be more secure than existing encryption algorithms while also being computationally faster.
dc.titlePractical Issues Involved In Implementing The Lucente Stabile Atkins (LSA) Cryptosystem
dc.typeevent
dc.legacy.pubstatuspublished
dc.legacy.ssustatusGraduate
dc.contributor.sponsorRosenthal, Arthur James
dc.date.displayMay 4, 2020en_US
dc.legacy.pubtitleResearch Day
dc.legacy.identifieritemhttps://digitalcommons.salemstate.edu/researchday/2020/gradfacultypres/31
dc.legacy.identifierfilehttps://digitalcommons.salemstate.edu/context/researchday/article/1132/type/native/viewcontent
dc.subject.keywordCryptography
dc.subject.keywordMathematics
dc.subject.keywordEncryption Algorithm
dc.subject.keywordAbstract Algebra
dc.subject.keywordNumber Theory
dc.subject.keywordKey Sharing


Files in this item

Thumbnail
Name:
AtkinsCarey.mp4
Size:
252.2Mb
Format:
MPEG-4 video

This item appears in the following Collection(s)

Show simple item record